N. TESLA.

SYSTEM OF ELECTRICAL DISTRIBUTION.
No. 390,413.
Patented 0 ot. 2, 1888.

N. TESLA.

SYSTEM OF ELEOTRIOAL DISTRIBUTION,
No. 390,413 .
Patented 0ct. 2, 1888.

WITNESSES:
-Papzocei Netrex
Qranst Murraly.

Sikola Sesea.

N. TESLA.

SYSTEM OF ELEOTRIOAL DISTRIBUTION.
No. 390,413.
Patented 0ot. 2, 1888.

United States Patent Onmice.

NIKOLA TESLA, OF NEW YORK, N. Y., ASSIGNOR TO THE TESLA ELECTRIC GOMPANY, OF SAME PLACE.

SYSTEM OF ELECTRICAL DISTRIBUTION.

SPEORFICATION forming part of Letters Patent No. 390, 613 , dated October 2, 1888.

Appileation filed April 10, 1888. Serin! No. 270.187. (No mone!.)

To all whom it may concern:
Ee it known that I, Nikola Testa, a subject of the Emperor of Austria, from Smiljan, Lika, border country of Austria-Hungary, re. 5 siding in the city, county, and State of New York, have invented certain new and useful Inprovements in Systems of Electrical Distribution, of which the following is a specification, reference being had to the drawings acro companying and forming a part of the same. In previous applications for patents made by me I have shown and described electrical systems for the transmission of power and the conversion and distribution of electrical en5 ergy, in which the motors and the transformers contain two or more coils or sets of coils, which were connented up in independent circnita with eorresponding coils of an alternating-current geaerator, the operaion of the system be20 ing bronght about by the co-operation of the alternating currents in the independent circuits in progressively moving or shifting the poles or points of maximum magnetic effect of the motors or converters. In these systems, 25 as I have described them, two independent conductors were employed for each of the indepondent circuits connecting the gener: acor with the devices for converting the transmitted correats into mechanical energy or but i have formd that this is not always necessary, and that the two or more circnits may have a single return path or wire in common, with a loss, if any, which is so extremely slight that it may be disregarded entirely. For sake of illastration, if the generator have two independent coils and the motor two coils or two sets of coils in corresponding relations to its operative elements one terminal of each generator coll is connected to the corresponding terminals of the motor coils throngh two independent conductors, while the opposite terminals of the respective colls are both connected to one return:wire.
in avention apphoable to my system in various ways, as will be seen by reference. to the drawings, in which-

Figure 1 is a diagrammatic illustration of a generator and single motor constructed and electrically connected in accordance with the
invention. Fig. 2 is a diagram. of the system as it is used in operating motors or converters, or both, in paralle or multiple arc. Fig. 3 illustrates diagmamatically the manner of operating two or nore motors or converters, or both, in series.

It is obvious that for purposes of this invention motors or transformers, which mat be all designated as "converters," are the same, and that either or both may be operated by the 60 same system or arrangement of circuits.
Referring to Fig. 1, A A designate the poles of the feld-magnets of an alternating current, gencrator, the armature of which, being in this case cyliudrical in form and mounted on a 65 shait, C , is wound longitudinally with coils B B'. The shaft C carries three insulated con-tact-rings, $a b c$, to two of which, as b o, one terminal of each coil, as $e d$, is connected. The lenaining terminals, $f g$, are both conuected. 7 to the third ring; a.

A motor in this case is shown as composed of a ring, H, wound with four coils, I I J J , electrically connected, so as to co-operate in pairs, with a tendency to fix the poles of the ring at four points ninety degrees apart. Within the maguetic ring H is a disk or cylindrical core wound with two coils, $G \dot{G}$, which may be connected to form two closed circuits. The terminals $j k$ of the two sets or 80 pairs of coils are connected, respectively, to the binding-posts $E^{\prime} \bar{F}^{\prime}$, and the other terminais, $h i$, are connected to a single bindingpost, D^{\prime}. To operate the motor, three linewires are used to connect the terminals of the 85 generator with those of the motor.
So far as the apparent action or mode of operation of this arrangement is concerned, the single wire D, which is, so to speak, a com. mon retarn-wire for boch eircaies, may be regarder as two independent wires. In illus. tration, with the order of comection shown, coil B^{\prime} of the generator is producing its maximum current and coil B its minimum; bence the current which passes through wire e, ring 95 b, brush b^{\prime}, line-wire E , terminat E , wire j; coils I I, wire or terminal D', line-wire D, brush a^{\prime}, ring a, and wire f, fixes the polar line of the motor midway between the two coils I I; but as the coil B^{\prime} moves from the po- ron
sition indicated it generates less curreut, while coil B, moving into the field, generates more. The current from coil B passes through the devices and wires designated by the letters d,
the $, \mathrm{F}, \mathrm{F}^{\prime}, k, \mathrm{~J} \mathrm{~J}, i, \mathrm{D}^{\prime}, \mathrm{D}, a^{\prime}, a$, and g, and the position of the poles of the motor will be due to the resultant effect of the currents in the two sets of coils-that is, it will be advanced in proportion to the advance or forso ward movement of the armature coils. The movement of the generator-armature through one quarter of a revolution will obviously bring coil B^{\prime} into its nentral position and coil B into its position of maximum effect, and 15 this shifts the poles ninety degrees, as they are fixed solely by coils B. This action is repeated for each quarter of a complete revolution.

When more than one motor or other device 20 is employed, they may be run either in parallel or series. In Fig. 2 the former arrangement is shown. The electrical device is shown as a converter, L, constructed as I have described in my application Serial No. 258,787, filed 25 December 23,1887 . The two sets of primary. coils $p r$ are connected, respectively, to the mains $F \mathrm{E}_{\text {, }}$ which are electrically connected with the two coils of the generator. The cross-circuit wires $l m$, making these connections, are then connected to the common re-turn-wire D. The secondary coils $p^{\prime} p^{\prime \prime}$ are in circuits $n o$, including, for example, incandescent lamps. Only one converter is shown entire in this figure, the others being illus35 trated diagrammatically.

When motors or converters are to be run in series, the two wires $\mathrm{E} F$ are led from the generator to the coils of the first motor or converter, then continued on to the next, and so on through the whole series, and are then joined to the single wire D , which completes both circuits through the generator. This is shown in Fig. 3, in which J I represent the two coils or sets of coils of the motors.

Obviously it is immaterial to the operation of the motor or equivalent device in Fig. 1 what order of connections is observed between the respective terminals of the generator or motor.
and have described the invention in its best and most practicable form of which I am aware; but there are other conditions under which it may be carried out. For example, in case the motor and generator each has three in55 dependent circuits, one terminal of cach cir-
cuit is connected to a line-wire and the other three terminals to a common return-condnctor: This arrangement will secure similar results to those attained with a generator and motor having but twoindependent circuits, as above described.

When applied to such machines and motors as have three or more induced circuits with a common electrical joint, the three or more terminals of the generator would be simply connected to those of the motor. Such forms of machines, when adapted in this manuer to my system, I have, however, found to be less efficient than the others.
The invention is applicable to machines and motors of various types, and according to circumstances and conditions readily understood. with more or less efficient results. I do not therefore limit myself to any of the details of construction of the apparatus herein shown.

What I claim is-

1. The combination, with a generator having independent current-generating circuits and a converter or converters having independent and corresponding circaits, of independent conductors connecting one terminal of each generator circuit with a corresponding terminal of the motor and a single conductor connecting the remaining generator and converter terminals, as set forth.
2. The combination, with a generator having independent current-generating circuits and a converter or converters baving independent and corresponding circuits, of independent line or connecting circuits formed in part through a condactor common to all, as set forth.
3. The system of electrical distribution herein set forth, consisting of the combina. tion, with an alternating-current generator having independent generating circuits and electro-magnetic motors or converters provided with corresponding energizing-circuits, of line wires or condactors connecting the coils of the motors or converters, respectively, in series with one terminal of each circuit of the generator, and a single return wire or conductor connecting the said conductors with the other terminals of the generato:, as set forth.

NIKOLA TESLA.
Witnesses:
Robt. F. Gaylord,
Frank E. Hartley.

